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Machine Learning

I Definition (Mitchell, 1997)
I “A computer program is said to learn from experience E with respect to some

class of tasks T and performance measure P, if its performance at tasks in T ,

as measured by P, improves with experience E .”

I Given:
I a task T
I a performance measure P
I some experience E with the task

I Goal:
I generalize the experience in a way that allows to improve your performance on

the task
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Indroduction of Classifiers
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Introduction of Classifiers

The most “popular” learning problem:

I Task:
I learn a model that predicts the outcome of a dependent variable for a given

instance

I Experience:
I experience is given in the form of a data base of examples
I an example describes a single previous observation

I instance: a set of measurements that characterize a situation
I label: the outcome that was observed in this situation

I Performance Measure:
I compare the predicted outcome to the observed outcome
I estimate the probability of predicting the right outcome in a new situation
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Data Representation

Attribute-Value Data

I Each example is decribed with values for a fixed number of attributes (also
called features)

I Nominal Attributes:
I store an unordered list of symbols (e.g., color)

I Numeric Attributes:
I store a number (e.g., income)
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A sample task

13 © J. Fürnkranz

A Sample TaskA Sample Task

Day Temperature  Outlook  Humidity  Windy Play Golf?

07-05 26  sunny  high false  no 

07-06 28  sunny  high true  no 

07-07 29  overcast  high false  yes 

07-09 23  rain  normal false  yes 

07-10 20  overcast  normal true  yes 

07-12 12  sunny  high false  no 

07-14 8  sunny  normal false  yes 

07-15 25  rain  normal false  yes 

07-20 18  sunny  normal true  yes 

07-21 18  overcast  high true  yes 

07-22 20  overcast  normal false  yes 

07-23 19  rain  high true  no 

07-26 11  rain  normal true  no 

07-30 16  rain  high false  yes 

today 9 sunny normal false ?

tomorrow 13 sunny normal false ?

possible rules:

play=no ← temperature ≥ 25.5
∧ temperature < 28.5
play=no ← temperature < 14
∧ temperature ≥ 9.5
play=no ← outlook=rainy ∧
windy=true

but also (t=temperature):

play=no ← t < 26.5 ∧ t ≥
25.5 ∧ outlook=sunny ∧
humidity=high ∧ windy=false
play=no ← t < 28.5 ∧ t ≥
27.5 ∧ outlook=sunny ∧
humidity=high ∧ windy=true
...
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Separate-and-conquer Rule Learning

I Separate-and-conquer (or Covering) paradigma (originated from the AQ

algorithm (Michalski, 1969))

I still used in most Rule Learning systems (e.g., Ripper (Cohen, 1995))

1. Generalization: extend the current theory by a “good” rule

2. Separate: remove all examples covered by this rule

3. Conquer: if examples left, goto 1.

I rules are combined in a decision list
I sorted list of rules
I the first rule that “covers” the example is used to classify the example
I if no rule covers the example the last rule is used as a default rule (predicts

the majority class)

July 2, 2009 | Oberseminar Stochastik 2009 | Janssen | 8 KE



Searching for a single rule

I generate the first rule that covers all examples

I generate all refinements of the current rule by creating all attribute-value
pairs from the data

I nominal attributes: use equality tests (i.e., =)
I numerical attributes: use inequality tests (i.e., ≥ and <)

I add each refinement to the current rule and test which is the best for a given

(heuristic) criterion

I if a new best is found store it

I if the error of the rule is 0 stop the process and return the best rule that was

found during this process
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Combining rules in a decision list

I if a rule is found add the rule to the sorted list of rules

I remove all the examples that are covered by the rule

I if all but the remaining n examples are covered stop inducing rules (currently

n = 1)

I else: search for the next rule on the remaining examples

I as last rule add a default rule that predicts the majority class
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Rule Learning Heuristics

I Rule Learning Heuristics implement the criterion for evaluating rules

I many Rule Learning Heuristics for classification are known (based on positive

and negative examples)

I Parametrized trade-off between
I Consistency: (1− error) of the rule and
I Coverage: how many examples are covered by the rule

I Heuristics for Regression (positive and negative examples are not known
here) rely on

I the current error/loss (Consistency in classification) of the rule
I the coverage of the rule

I Regression Heuristics may also feature a parameter that trades off between

the error and the Coverage of the rule
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From Classification to Regression

I instead of predicting a discrete outcome in Regression the outcome is

continuous

I 2 ways to deal with this:
1. discretize numeric outcome and use standard classification algorithms

I problem: number of classes has to be known in advance
I algorithm used to discretize: P-Class (Weiss and Indurkhya, 1995))

2. adapt the algorithm to Regression tasks

I example for an adaption in Rule Learning
I either predict a certain value (Median or Mean) in the head of the rule directly

(like we did)
I or use a (linear) model in the head to predict the value (algorithm M5Rules

(Holmes, Hall, and Frank, 1999), (Quinlan, 1992))
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Regression measures

I Mean Absolute Error MAE = 1
n

n∑
i=1

|yi − ȳi |

I Mean Squared Error MSE = 1
n

n∑
i=1

(yi − ȳi )
2

I Deviation from Mean def = 1
n

n∑
i=1

(yi − y ′)2

I Normalized Mean Squared Error NMSE = MSE/def

I Relative Coverage RC = Coverage(r)/n

I Relative Cost Measure hrcm = c · (1− NMSE ) + (1− c) · RC

where n = # of examples left, yi = true value, ȳi = predicted value, y ′ = mean

of all instances, r = the current rule
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Current implementation

I numerical and nominal attributes, numerical target variable

I covering paradigma

I interchangeable heuristics and splitpoint computing methods

I parameters:
I parameter of the heuristic
I parameter for splitpoint computation

I to reduce the number of splitpoints for a numerical attribute a clustering was

used
I the parameter determines how many clusters are computed

I percentage of coverage of ruleset (for inducing the default rule)
I currently all but the last remaining example has to be covered
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Handling of numerical attributes

I if all possible splitpoints (those between 2 instances) for all numeric

attributes are used the search space explodes

I remedy: do not create all splitpoints but cluster examples together that

minimize some error criterion

I and use only the splitpoints between these clusters (currently about 5-10)
I Algorithm:

I sort the examples of the attribute in ascending order
I remove duplicates by setting the mean over all duplicates as target value
I merge examples that minimize the mean absolute error

1 2 3 4 5 6 7 8 9 10
2 63211231.534

Attribute Value
Target Value
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Handling of numerical attributes

I if all possible splitpoints (those between 2 instances) for all numeric

attributes are used the search space explodes

I remedy: do not create all splitpoints but cluster examples together that

minimize some error criterion

I and use only the splitpoints between these clusters (currently about 5-10)
I Algorithm:

I sort the examples of the attribute in ascending order
I remove duplicates by setting the mean over all duplicates as target value
I merge examples that minimize the mean absolute error

1 2 3 4 5 6 7 8 9 10
2 63211231.534

Attribute Value
Target Value

9.56.53.5 5.5
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Evaluation of the models

I for domain-dependent evaluation we used MAE and RMSE =
√

MSE

I for domain-independent evaluation we used the correlation coefficient

(between predicted and actual value)

I we also record model complexity by measuring the number of rules and

conditions (for rule based models)

I 1x10 cross-validation with same folds for each model

I our approach was compared to M5Rules, Linear Regression,

SVMReg (all implemented in weka (Witten and Frank, 2005))
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Results

In terms of MAE

I preliminary results (sp = 10, c = 0.45) for 13 datasets from the

UCI-Repository (Asuncion and Newman, 2007)
I second number describes standard deviation among the 10 folds of the CV

dataset SeCo M5Rules Linear Regression SVMReg

auto-horse 16.61± 6.35 15.85± 10.25 13.64± 3.24 13.48± 4.0
auto-mpg 4.44± 1.49 3.03± 0.81 2.87± 0.98 2.83± 0.98
auto-price 2526.6± 773.1 2157.8± 937.4 2450.5± 1084.0 2292.32± 1012.05

breast-tumor 8.02± 0.73 7.79± 0.74 7.9± 0.72 8.2± 0.76
cloud 0.45± 0.15 0.3± 0.12 0.27± 0.07 0.28± 0.09
cpu 36.80± 29.38 15.19± 9.17 47.7± 20.89 24.95± 23.52

echo-month 13.41± 2.62 8.68± 2.97 8.48± 3.15 9.08± 2.73
housing 5.43± 2.98 3.39± 1.44 3.99± 2.13 3.73± 2.05

meta 95.59± 170.29 232.52± 190.24 146.54± 148.08 96.91± 166.08
sensory 0.64± 0.13 0.73± 0.14 0.76± 0.18 0.77± 0.19
servo 0.54± 0.15 0.32± 0.11 0.62± 0.12 0.53± 0.17
strike 274.61± 116.46 287.0± 87.31 264.73± 84.0 228.49± 83.23

veteran 91.28± 59.05 92.99± 44.4 92.99± 44.4 82.58± 54.89

average rank 3.08 2.27 2.58 2.08
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Results

In terms of different parametrizations

I the number of splitpoints are fixed to 10 but the parameter of the heuristic is

varied
I lowest errors are marked blue

dataset c = 0.45 c = 0.5 c = 0.6 c = 0.7

MAE # rules MAE # rules MAE # rules MAE # rules

auto-horse 16.6 2 15.2 16 21.4 35 16.5 57
auto-mpg 4.44 1 3.92 157 3.62 184 3.64 226
auto-price 2526 6 2922 7 3104 46 2836 48

breast-tumor 8.0 0 8.5 13 10.7 209 10.4 236
cloud 0.45 7 0.46 6 0.42 12 0.39 42
cpu 36.8 5 37.8 7 38.8 9 29.3 15

echo-month 13.4 0 14.2 79 14.2 92 13.2 87
housing 5.43 5 4.7 43 4.54 369 4.47 427

meta 95.6 3 95.2 30 147.8 69 147 124
sensory 0.63 0 0.82 430 0.86 404 0.9 428
servo 0.54 4 0.39 20 0.39 22 0.38 29
strike 274 0 362 234 361 300 368 359

veteran 91 0 116 70 119 82 123 91
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Discussion

I our algorithm implements a Separate-and-conquer Regression Rule Learner

I trade-off between consistency and coverage is more complex than it is in
classification

I tuning of the parameters has to be analyzed better

I but the current implementation is competetive to other rule-based

implementations (that do not predict models in the head)

I a new splitpoint computing method was introduced
I only about 10 splitpoints are sufficient for most of the datasets
I much more faster than computing all splitpoints
I but optimal cluster number still has to be found
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Future Work

I this is work-in-progress so there are many ways to improve the algorithm
I by determine a suitable setting of the cluster parameter
I by systematically tune the parameter of the heuristic

I previously we tuned the parameters of 5 heuristics for classification
I we also want to find the best parameter for regression

I by avoiding overfitting by leaving more examples uncovered

I predict (linear) models in the head of the rule

I try to visualize the behaviour of the different heuristics in a space similar to

Coverage Spaces

I include domain-independent comparison with RRMSE =
√

MSE
def
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