Rule-based Regression

Frederik Janssen

Outline

- 1. Machine Learning
	- \blacktriangleright Classifiers
	- \blacktriangleright Data Representation
	- \blacktriangleright Concept Representation
- 2. Separate-and-conquer Rule Learning
- 3. Regression
	- \blacktriangleright Regression by classification
	- \blacktriangleright Regression measures
- 4. Current implementation
- 5. Some results
- 6. Discussion

Machine Learning

- Definition (Mitchell, 1997)
	- \blacktriangleright "A computer program is said to learn from experience E with respect to some class of tasks T and performance measure P , if its performance at tasks in T, as measured by P , improves with experience E ."
- \blacktriangleright Given:
	- \blacktriangleright a task T
	- \blacktriangleright a performance measure P
	- Some experience E with the task
- \blacktriangleright Goal:
	- **Exerce in experience in a way that allows to improve your performance on** the task

Indroduction of Classifiers

Introduction of Classifiers

The most "popular" learning problem:

- \blacktriangleright Task:
	- learn a model that predicts the outcome of a dependent variable for a given instance
- Experience:
	- \triangleright experience is given in the form of a data base of examples
	- \triangleright an example describes a single previous observation
		- \triangleright instance: a set of measurements that characterize a situation
		- \blacktriangleright label: the outcome that was observed in this situation
- **Performance Measure:**
	- \triangleright compare the predicted outcome to the observed outcome
	- \triangleright estimate the probability of predicting the right outcome in a new situation

Data Representation

Attribute-Value Data

- \triangleright Each example is decribed with values for a fixed number of attributes (also called features)
	- \blacktriangleright Nominal Attributes:
		- \triangleright store an unordered list of symbols (e.g., color)
	- \blacktriangleright Numeric Attributes:
		- \triangleright store a number (e.g., *income*)

A sample task

A sample task

possible rules:

play=no \leftarrow temperature ≥ 25.5 ∧ temperature < 28.5 play=no \leftarrow temperature < 14 ∧ temperature ≥ 9.5 play=no ← outlook=rainy ∧ windy=true

A sample task

possible rules:

play=no \leftarrow temperature ≥ 25.5 ∧ temperature < 28.5 play=no \leftarrow temperature < 14 ∧ temperature ≥ 9.5 play=no ← outlook=rainy ∧ windy=true

but also (t=temperature):

Separate-and-conquer Rule Learning

- **E** Separate-and-conquer (or Covering) paradigma (originated from the AQ algorithm (Michalski, 1969))
- \triangleright still used in most Rule Learning systems (e.g., RIPPER (Cohen, 1995))
- 1. Generalization: extend the current theory by a "good" rule
- 2. Separate: remove all examples covered by this rule
- 3. Conquer: if examples left, goto 1.
- ^I rules are combined in a decision list
	- \triangleright sorted list of rules
	- \triangleright the first rule that "covers" the example is used to classify the example
	- \triangleright if no rule covers the example the last rule is used as a default rule (predicts the majority class)

Searching for a single rule

- generate the first rule that covers all examples
- generate all refinements of the current rule by creating all attribute-value pairs from the data
	- nominal attributes: use equality tests (i.e., $=$)
	- **•** numerical attributes: use inequality tests (i.e., $>$ and $<$)
- \triangleright add each refinement to the current rule and test which is the best for a given (heuristic) criterion
- \triangleright if a new best is found store it
- \triangleright if the error of the rule is 0 stop the process and return the best rule that was found during this process

Combining rules in a decision list

- \triangleright if a rule is found add the rule to the sorted list of rules
- remove all the examples that are covered by the rule
- if all but the remaining n examples are covered stop inducing rules (currently $n = 1$
- else: search for the next rule on the remaining examples
- as last rule add a default rule that predicts the majority class

Rule Learning Heuristics

- Rule Learning Heuristics implement the criterion for evaluating rules
- many Rule Learning Heuristics for classification are known (based on positive and negative examples)
- \blacktriangleright Parametrized trade-off between
	- \triangleright Consistency: $(1 error)$ of the rule and
	- \triangleright Coverage: how many examples are covered by the rule
- \blacktriangleright Heuristics for Regression (positive and negative examples are not known here) rely on
	- \triangleright the current error/loss (Consistency in classification) of the rule
	- \blacktriangleright the coverage of the rule
- Regression Heuristics may also feature a parameter that trades off between the error and the Coverage of the rule

From Classification to Regression

- instead of predicting a discrete outcome in Regression the outcome is continuous
- 2 ways to deal with this:
	- 1. discretize numeric outcome and use standard classification algorithms
		- \triangleright problem: number of classes has to be known in advance
		- \triangleright algorithm used to discretize: P-CLASS (Weiss and Indurkhya, 1995))
	- 2. adapt the algorithm to Regression tasks
	- \triangleright example for an adaption in Rule Learning
		- ighther predict a certain value (Median or Mean) in the head of the rule directly (like we did)
		- \triangleright or use a (linear) model in the head to predict the value (algorithm $M5RULES$ (Holmes, Hall, and Frank, 1999), (Quinlan, 1992))

Regression measures

\n- Mean Absolute Error
$$
MAE = \frac{1}{n} \sum_{i=1}^{n} |y_i - \bar{y}_i|
$$
\n- Mean Squared Error $MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \bar{y}_i)^2$
\n

- \blacktriangleright Mean Squared Error $MSE =$ $i=1$ $(y_i - \bar{y}_i)$
- ▶ Deviation from Mean $\det = \frac{1}{n} \sum_{n=1}^{n}$ $i=1$ $(y_i - y')^2$
- Normalized Mean Squared Error $NMSE = MSE/def$
- Relative Coverage $RC = \text{CoverAGE}(r)/n$
- ► Relative Cost Measure $h_{rcm} = c \cdot (1 NMSE) + (1 c) \cdot RC$

where $n=\#$ of examples left, $y_i=$ true value, $\bar{y}_i=$ predicted value, $y'=$ mean of all instances, $r =$ the current rule

Current implementation

- \triangleright numerical and nominal attributes, numerical target variable
- covering paradigma
- interchangeable heuristics and splitpoint computing methods
- parameters:
	- parameter of the heuristic
	- \blacktriangleright parameter for splitpoint computation
		- \triangleright to reduce the number of splitpoints for a numerical attribute a clustering was used
		- \triangleright the parameter determines how many clusters are computed
	- \triangleright percentage of coverage of ruleset (for inducing the default rule)
		- \triangleright currently all but the last remaining example has to be covered

- if all possible splitpoints (those between 2 instances) for all numeric attributes are used the search space explodes
- remedy: do not create all splitpoints but cluster examples together that minimize some error criterion
- and use only the splitpoints between these clusters (currently about 5-10)
- Algorithm:
	- \triangleright sort the examples of the attribute in ascending order
	- remove duplicates by setting the mean over all duplicates as target value
	- \triangleright merge examples that minimize the mean absolute error

- if all possible splitpoints (those between 2 instances) for all numeric attributes are used the search space explodes
- remedy: do not create all splitpoints but cluster examples together that minimize some error criterion
- and use only the splitpoints between these clusters (currently about 5-10)
- Algorithm:
	- \triangleright sort the examples of the attribute in ascending order
	- remove duplicates by setting the mean over all duplicates as target value
	- merge examples that minimize the mean absolute error

- if all possible splitpoints (those between 2 instances) for all numeric attributes are used the search space explodes
- remedy: do not create all splitpoints but cluster examples together that minimize some error criterion
- and use only the splitpoints between these clusters (currently about 5-10)
- Algorithm:
	- \triangleright sort the examples of the attribute in ascending order
	- remove duplicates by setting the mean over all duplicates as target value
	- merge examples that minimize the mean absolute error

- if all possible splitpoints (those between 2 instances) for all numeric attributes are used the search space explodes
- remedy: do not create all splitpoints but cluster examples together that minimize some error criterion
- and use only the splitpoints between these clusters (currently about 5-10)
- Algorithm:
	- \triangleright sort the examples of the attribute in ascending order
	- remove duplicates by setting the mean over all duplicates as target value
	- merge examples that minimize the mean absolute error

- if all possible splitpoints (those between 2 instances) for all numeric attributes are used the search space explodes
- remedy: do not create all splitpoints but cluster examples together that minimize some error criterion
- and use only the splitpoints between these clusters (currently about 5-10)
- Algorithm:
	- \triangleright sort the examples of the attribute in ascending order
	- remove duplicates by setting the mean over all duplicates as target value
	- merge examples that minimize the mean absolute error

- if all possible splitpoints (those between 2 instances) for all numeric attributes are used the search space explodes
- remedy: do not create all splitpoints but cluster examples together that minimize some error criterion
- and use only the splitpoints between these clusters (currently about 5-10)
- Algorithm:
	- \triangleright sort the examples of the attribute in ascending order
	- remove duplicates by setting the mean over all duplicates as target value
	- merge examples that minimize the mean absolute error

- if all possible splitpoints (those between 2 instances) for all numeric attributes are used the search space explodes
- remedy: do not create all splitpoints but cluster examples together that minimize some error criterion
- and use only the splitpoints between these clusters (currently about 5-10)
- Algorithm:
	- \triangleright sort the examples of the attribute in ascending order
	- remove duplicates by setting the mean over all duplicates as target value
	- merge examples that minimize the mean absolute error

Evaluation of the models

- \blacktriangleright for domain-dependent evaluation we used MAE and RMSE $=$ √ MSE
- for domain-independent evaluation we used the correlation coefficient (between predicted and actual value)
- we also record model complexity by measuring the number of rules and conditions (for rule based models)
- 1×10 cross-validation with same folds for each model
- our approach was compared to $M5RULES$, LINEAR REGRESSION, SVMReg (all implemented in weka (Witten and Frank, 2005))

Results

In terms of MAE

- reliminary results ($sp = 10$, $c = 0.45$) for 13 datasets from the UCI-Repository (Asuncion and Newman, 2007)
- second number describes standard deviation among the 10 folds of the CV

July 2, 2009 | Oberseminar Stochastik 2009 | Janssen | 17

Results

In terms of different parametrizations

- \triangleright the number of splitpoints are fixed to 10 but the parameter of the heuristic is varied
- lowest errors are marked blue

July 2, 2009 | Oberseminar Stochastik 2009 | Janssen | 18 Keeper | 18 Keeper | Keeper

Discussion

- ^I our algorithm implements a Separate-and-conquer Regression Rule Learner
- trade-off between consistency and coverage is more complex than it is in classification
	- \triangleright tuning of the parameters has to be analyzed better
- \triangleright but the current implementation is competetive to other rule-based implementations (that do not predict models in the head)
- a new splitpoint computing method was introduced
	- \triangleright only about 10 splitpoints are sufficient for most of the datasets
	- much more faster than computing all splitpoints
	- but optimal cluster number still has to be found

Future Work

\triangleright this is work-in-progress so there are many ways to improve the algorithm

- \triangleright by determine a suitable setting of the cluster parameter
- \triangleright by systematically tune the parameter of the heuristic
	- \triangleright previously we tuned the parameters of 5 heuristics for classification
	- \triangleright we also want to find the best parameter for regression
- \triangleright by avoiding overfitting by leaving more examples uncovered
- \triangleright predict (linear) models in the head of the rule
- ^I try to visualize the behaviour of the different heuristics in a space similar to Coverage Spaces
- \blacktriangleright include domain-independent comparison with RRMSE $=\sqrt{\frac{MSE}{d\epsilon}}$

References

- (Weiss and Indurkhya, 1995): S. M. Weiss and N. Indurkhya. Rule-based Machine Learning Methods for Functional Prediction. Journal of Artificial Intelligence Research, 3:383-403, 1995.
- I (Holmes, Hall, and Frank, 1999): G.Holmes, M.Hall, and E.Frank. Generating Rule Sets from Model Trees. In Proceedings of the 12th Australian Joint Conference on Artificial Intelligence, pages 1-12, Sydney, Australia, 1999.
- (Quinlan, 1992): R.J. Quinlan. Learning with Continuous Classes. In Proceedings of the 5th Australian Joint Conference on Artificial Intelligence, pages 343-348, Hobart, Australia, 1992.
- (Michalski, 1969): R.S. Michalski. On the Quasi-Minimal Solution of the Covering Problem. In Proceedings of the 5th International Symposium on Information Processing, Volume A3, pages 125-128, Bled, Yugoslavia, 1969.
- \triangleright (Cohen, 1995): W.W. Cohen. Fast effective rule induction. In Proceedings of the 12th International Conference on Machine Learning, pages 115-123, Tahoe City, USA, 1995.
- (Mitchell, 1997): T.M.Mitchell. Machine Learning, McGraw-Hill, 1997
- **IN** (Asuncion and Newman, 2007): A.Asuncion and D.Newman. UCI machine learning repository, 2007. URL: <http://archive.ics.uci.edu/ml/datasets.html>
- I (Witten and Frank, 2005): I.H.Witten and E.Frank. Data Mining Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publishers, 2nd edition, 2005.